diople calculation
Moderators: Davide Sangalli, andrea marini, Conor Hogan, myrta gruning

 Posts: 48
 Joined: Thu Sep 06, 2018 7:57 am
 Location: Wuhan University
diople calculation
Hi all,
I have a stupid question here.
I want to calculate dielectric function within RPA (o c).
I notice that, for q1 (0,0,0), dipoles P and iR will be calculated first:
<20s> P0001: [WF] Performing WaveFunctions I/O from ./SAVE
<22s> P0001: Dipoles: P and iR (T):   [000%] (E) (X)
<33s> P0001: Dipoles: P and iR (T): #  [002%] 10s(E) 07m13s(X)
and then enter response function calculation:
<07m39s> P0001: Xo@q[1]   [000%] (E) (X)
<07m44s> P0001: Xo@q[1] ####################  [052%] 05s(E) 09s(X)
<07m48s> P0001: Xo@q[1] ######################################## [100%] 09s(E) 09s(X)
but for finite q, response function would be calculated directly after reading wavefunction from ./SAVE while dipoles are not calculated.
<21s> P0001: [WF] Performing WaveFunctions I/O from ./SAVE
<21s> P0001: [FFTX] Mesh size: 21 21 48
<39s> P0001: [XCG] R(p) Tot o/o(of R) : 51399 258176 100
<39s> P0001: [X] Upper matrix triangle filled
<39s> P0001: Xo@q[6]   [000%] (E) (X)
<44s> P0001: Xo@q[6] #  [004%] 05s(E) 01m48s(X)
Q: why is dipole calculation only necessary for q1 vector? what is the difference between q=0 and finite q calculation ?
I have a stupid question here.
I want to calculate dielectric function within RPA (o c).
I notice that, for q1 (0,0,0), dipoles P and iR will be calculated first:
<20s> P0001: [WF] Performing WaveFunctions I/O from ./SAVE
<22s> P0001: Dipoles: P and iR (T):   [000%] (E) (X)
<33s> P0001: Dipoles: P and iR (T): #  [002%] 10s(E) 07m13s(X)
and then enter response function calculation:
<07m39s> P0001: Xo@q[1]   [000%] (E) (X)
<07m44s> P0001: Xo@q[1] ####################  [052%] 05s(E) 09s(X)
<07m48s> P0001: Xo@q[1] ######################################## [100%] 09s(E) 09s(X)
but for finite q, response function would be calculated directly after reading wavefunction from ./SAVE while dipoles are not calculated.
<21s> P0001: [WF] Performing WaveFunctions I/O from ./SAVE
<21s> P0001: [FFTX] Mesh size: 21 21 48
<39s> P0001: [XCG] R(p) Tot o/o(of R) : 51399 258176 100
<39s> P0001: [X] Upper matrix triangle filled
<39s> P0001: Xo@q[6]   [000%] (E) (X)
<44s> P0001: Xo@q[6] #  [004%] 05s(E) 01m48s(X)
Q: why is dipole calculation only necessary for q1 vector? what is the difference between q=0 and finite q calculation ?
Weiqing Zhou
Phd student
Wuhan University
Wuhan, Hubei, 430072
Phd student
Wuhan University
Wuhan, Hubei, 430072
 claudio
 Posts: 222
 Joined: Tue Mar 31, 2009 11:33 pm
 Contact:
Re: diople calculation
Dear Zhou
the difference is that for q/=0 you can calculate matrix elements directly doing
<\psi_v  exp{i q r }  \psi_c>
while this is not possible at q=0 at you have to use the commutator
p = i [H,r]
p_{v,c} = i (e_v  e_c ) r_{v,c}
to evaluate r_{v,c}.
best
Claudio
the difference is that for q/=0 you can calculate matrix elements directly doing
<\psi_v  exp{i q r }  \psi_c>
while this is not possible at q=0 at you have to use the commutator
p = i [H,r]
p_{v,c} = i (e_v  e_c ) r_{v,c}
to evaluate r_{v,c}.
best
Claudio
Claudio Attaccalite
Institut Neel, CNRS/UJF ABINEEL group
25 rue des Martyrs BP 166, Bâtiment D
38042 Grenoble cedex 9 France
web site: http://www.attaccalite.com
Freely download scientific books from: http://www.freescience.info
Institut Neel, CNRS/UJF ABINEEL group
25 rue des Martyrs BP 166, Bâtiment D
38042 Grenoble cedex 9 France
web site: http://www.attaccalite.com
Freely download scientific books from: http://www.freescience.info

 Posts: 48
 Joined: Thu Sep 06, 2018 7:57 am
 Location: Wuhan University
Re: diople calculation
Dear Claudio
Many Thanks!
I want to know the detail about how the macroscopic dielectric function is actually evaluated in yambo at q→0. Is there any paper or ref ?
Best,
Weiqing
Many Thanks!
I want to know the detail about how the macroscopic dielectric function is actually evaluated in yambo at q→0. Is there any paper or ref ?
Best,
Weiqing
Weiqing Zhou
Phd student
Wuhan University
Wuhan, Hubei, 430072
Phd student
Wuhan University
Wuhan, Hubei, 430072
 claudio
 Posts: 222
 Joined: Tue Mar 31, 2009 11:33 pm
 Contact:
Re: diople calculation
Dear Weiqing
try to have a look here:
http://www.yambocode.org/theory/lectures.php
https://www.amazon.com/Electrodynamics ... 0521597269
http://www.yambocode.org/publications/theses.php
https://etsf.polytechnique.fr/system/fi ... si_dot.pdf
best
Claudio
try to have a look here:
http://www.yambocode.org/theory/lectures.php
https://www.amazon.com/Electrodynamics ... 0521597269
http://www.yambocode.org/publications/theses.php
https://etsf.polytechnique.fr/system/fi ... si_dot.pdf
best
Claudio
Claudio Attaccalite
Institut Neel, CNRS/UJF ABINEEL group
25 rue des Martyrs BP 166, Bâtiment D
38042 Grenoble cedex 9 France
web site: http://www.attaccalite.com
Freely download scientific books from: http://www.freescience.info
Institut Neel, CNRS/UJF ABINEEL group
25 rue des Martyrs BP 166, Bâtiment D
38042 Grenoble cedex 9 France
web site: http://www.attaccalite.com
Freely download scientific books from: http://www.freescience.info
 Daniele Varsano
 Posts: 2097
 Joined: Tue Mar 17, 2009 2:23 pm
 Contact:
Re: diople calculation
Dear Weiking,
you can have a look to this recent paper about the yambo code:
It is an open access paper and you can get it at this address:
https://iopscience.iop.org/article/10.1 ... 48X/ab15d0
Best,
Daniele
you can have a look to this recent paper about the yambo code:
It is an open access paper and you can get it at this address:
https://iopscience.iop.org/article/10.1 ... 48X/ab15d0
Best,
Daniele
Dr. Daniele Varsano
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/

 Posts: 48
 Joined: Thu Sep 06, 2018 7:57 am
 Location: Wuhan University
Re: diople calculation
Dear Daniele,
Thanks!
What I want to know is explicit expressions of the microscopic dielectric function implemented in Yambo.
In Ref Rev. Mod. Phys.74, 601 (2002), Eq.(2.8) give the formula of socalled independentparticlerandomphase approximation macroscopic dielectric function. Does yambo use exactly same expression?
If the answer is not, what explicit formula implemented in Yambo to calculate macroscopic dielectric function ?
Best,
Weiqing
Thanks!
What I want to know is explicit expressions of the microscopic dielectric function implemented in Yambo.
In Ref Rev. Mod. Phys.74, 601 (2002), Eq.(2.8) give the formula of socalled independentparticlerandomphase approximation macroscopic dielectric function. Does yambo use exactly same expression?
If the answer is not, what explicit formula implemented in Yambo to calculate macroscopic dielectric function ?
Best,
Weiqing
Weiqing Zhou
Phd student
Wuhan University
Wuhan, Hubei, 430072
Phd student
Wuhan University
Wuhan, Hubei, 430072
 Daniele Varsano
 Posts: 2097
 Joined: Tue Mar 17, 2009 2:23 pm
 Contact:
Re: diople calculation
Dear Weiking,
are you interested in macrsoscopic o microscopic dielectric function, this is not clear in your post?
In the case of macroscopic you need to distinguish if local filed are included or not.
In case of independentparticlerandomphase approximation the expression is:
eps_M=1vX^0_00
where v is the coulomb potential and X^0_00 is the G=0,G'=0 component of the independent particle response function.
the explicit expression of X^0 is reported in Eq.1 of the paper I mentioned before:
https://iopscience.iop.org/article/10.1 ... 48X/ab15d0
For the G=0,G'=0 component of X^0 dipoles are needed and there are different ways to calculate them as explained in Sec. 3.1
Best,
Daniele
are you interested in macrsoscopic o microscopic dielectric function, this is not clear in your post?
In the case of macroscopic you need to distinguish if local filed are included or not.
In case of independentparticlerandomphase approximation the expression is:
eps_M=1vX^0_00
where v is the coulomb potential and X^0_00 is the G=0,G'=0 component of the independent particle response function.
the explicit expression of X^0 is reported in Eq.1 of the paper I mentioned before:
https://iopscience.iop.org/article/10.1 ... 48X/ab15d0
For the G=0,G'=0 component of X^0 dipoles are needed and there are different ways to calculate them as explained in Sec. 3.1
Best,
Daniele
Dr. Daniele Varsano
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/

 Posts: 48
 Joined: Thu Sep 06, 2018 7:57 am
 Location: Wuhan University
Re: diople calculation
Dear Daniele,
Thanks for reply!
Maybe I did not express myself correctly. My focus is macroscopic dielectric function \epsilon(q \to 0,ω), whose definition can be found in Eq.(2.7) in Rev. Mod. Phys.74, 601 (2002).
In Eq.1 and Eq.2 of the paper https://iopscience.iop.org/article/10.1 ... 48X/ab15d0, \epsilon(q,ω) is not welldefined for the case of q = 0. And in Section 3.1, the paper gives the expression of dipole element and says \epsilon(q= 0,ω) can be calculated by using dipole elements . But I still don't know the exact expression of \epsilon(q= 0,ω) implemented in yambo.
Last post, I mention Eq.(2.8) of Rev. Mod. Phys.74, 601 (2002). It give the exact expression of Im[\epsilon(q \to 0,ω)] within independentparticlerandomphase approximation. that is why I'm asking if Yambo use same expression in case of independentparticlerandomphase approximation. If not, I want to know the exact expression of \epsilon(q= 0,ω) if local field effect is not included since I don't find it at any paper related to yambo.
Best,
Weiqing
Thanks for reply!
Maybe I did not express myself correctly. My focus is macroscopic dielectric function \epsilon(q \to 0,ω), whose definition can be found in Eq.(2.7) in Rev. Mod. Phys.74, 601 (2002).
In Eq.1 and Eq.2 of the paper https://iopscience.iop.org/article/10.1 ... 48X/ab15d0, \epsilon(q,ω) is not welldefined for the case of q = 0. And in Section 3.1, the paper gives the expression of dipole element and says \epsilon(q= 0,ω) can be calculated by using dipole elements . But I still don't know the exact expression of \epsilon(q= 0,ω) implemented in yambo.
Last post, I mention Eq.(2.8) of Rev. Mod. Phys.74, 601 (2002). It give the exact expression of Im[\epsilon(q \to 0,ω)] within independentparticlerandomphase approximation. that is why I'm asking if Yambo use same expression in case of independentparticlerandomphase approximation. If not, I want to know the exact expression of \epsilon(q= 0,ω) if local field effect is not included since I don't find it at any paper related to yambo.
Best,
Weiqing
Weiqing Zhou
Phd student
Wuhan University
Wuhan, Hubei, 430072
Phd student
Wuhan University
Wuhan, Hubei, 430072
 Daniele Varsano
 Posts: 2097
 Joined: Tue Mar 17, 2009 2:23 pm
 Contact:
Re: diople calculation
Dear Weiking,
ithe indipendent particle macroscopic dilelectric function is caluclated as:
eps_M=1vX^0_00
v is the Coulomb potential.
X^0 is the independent particle response function.
X_GG' is given Eq.1 of the paper. For the macroscopic equation G=0 and G'=0 and the limit for q>0 need to be considered.
In this limit e^iq.r ~ 1+iq.r so the term iq.<nkrmk> needs to be calculated and there different way to calculate the dipole elements (Sec 3.1).
If you want to go into the code you can have a look at ./src/pol_function/OPTICS_driver.F
line 222
Note that with repsect the expression of RevModPhys the delta function are substituted by Lorentziam as there is always a finite damping \eta.
If the dipole is calculated as expression 3 of the paper: p+[r,Vnl] = v
and the expression is equivalent to the one of RevModPhys in the limit of the damping goes to zero.
I hope now it is more clear,
Best,
Daniele
ithe indipendent particle macroscopic dilelectric function is caluclated as:
eps_M=1vX^0_00
v is the Coulomb potential.
X^0 is the independent particle response function.
X_GG' is given Eq.1 of the paper. For the macroscopic equation G=0 and G'=0 and the limit for q>0 need to be considered.
In this limit e^iq.r ~ 1+iq.r so the term iq.<nkrmk> needs to be calculated and there different way to calculate the dipole elements (Sec 3.1).
If you want to go into the code you can have a look at ./src/pol_function/OPTICS_driver.F
line 222
Code: Select all
if (Macroscopic_CPU) Epsilon_ii(:,1)=1.0_SPX_par(1)%blc(i_G_shift,i_G_shift,:)*4.0_SP*pi/Q_plus_G_sq_modulus
223 !
224 ! X Dyson equation solver
225 !
226 if (l_rpa_IP) then
227 !
228 if (Macroscopic_CPU) Epsilon_ii(:,2)=Epsilon_ii(:,1)
229 !
If the dipole is calculated as expression 3 of the paper: p+[r,Vnl] = v
and the expression is equivalent to the one of RevModPhys in the limit of the damping goes to zero.
I hope now it is more clear,
Best,
Daniele
Dr. Daniele Varsano
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/
S3CNR Institute of Nanoscience and MaX Center, Italy
MaX  Materials design at the Exascale
http://www.nano.cnr.it
http://www.maxcentre.eu/